Выбор типов растворов электролитов обусловлен совместимостью растворов по показателям барических коэффициентов, как показано на рисунке 2.

Выводы

Применение в системах охлаждения судовых силовых установок растворов электролитов вытекает из получения определённых свойств теплоносителей для различных типов ДВС. Выбор электролитов вместо этиленгликолей позволяет достигать лучших показателей взаимодействия с ингибиторами коррозии, в случае деградации свойств последних достаточно парциальных добавок в систему охлаждения. Учитывая экологические требования к эксплуатации ДВС этот способ улучшения свойств теплоносителей видится более предпочтительным и менее затратным.

Литература

- Косолап Ю.Г. Теплопроводность смешанных растворов электролитов: дис...канд. техн. наук.-Баку, 1990.– 194 с.
- Сафронов Г.А. Теплопроводность водных растворов электролитов: дис...канд. техн. наук.-Баку, 1985.– 220 с.
- Абдулаев К.М., Эльдаров. В.С. Расчет теплопроводности двухкомпонентных растворов солей. //Изв. вузов: Нефть и газ. -1985. – №10.– С. 57-60
- Литвиненко И.В. Теплопроводность водных растворов электролитов и ее связь со структурой воды: автореф. дисс...канд. техн. Наук.– Днепропетровск, 1968.– 20 с.

- Michels A. Sengers I. V. and Van der Culir P.S, The Thermal Gonductivity of carbon dioxide in the critical Region // Physica, 1962, №3, P. 1201-12015.
- Васильев В.П. Термодинамические свойства раствора электролита.– М.: Высшая скола, 1982.– 320 с.
- Григорьев Е. Б.: диссертация ... доктора технических наук: 05.14.05,01.04.14. – Казань, 2008.
- Филиппов Л.П. Исследование теплопроводности жидкостей. -М.: Изд-во МГУ, 1970.– 239 с.

References

- Kosolap.YU.G. Teploprovodnosť smeshannyh rastvorov elektrolitov. Dis...kand. tekhn.nauk.-Baku,1990.- 194s.
- Safronov.G.A. Teploprovodnosť vodnyh rastvorov elektrolitov. Dis...kand. tekhn.nauk.- Baku,1985.-220s.
- Abdulaev.K.M. El'darov. V.S. Raschet teploprovodnosti dvuhkomponent-nyh rastvorov solej. //Izv.vuzov: Neft' i gaz. -1985.-№10.-s. 57-60
- Litvinenko.I.V. Teploprovodnosť vodnyh rastvorov elektrolitov i ee svyaz' so strukturoj vody Avtoref.diss...kand.tekhn.nauktrovsk,1968.-20s.
- Michels A. Sengers I. V. and Van der Culir P.S, The Thermal Gonductivity of carbon dioxide in the critical Region // Physica, 1962, №3, R. 1201-12015.
- 6. Vasil'ev V.P. Termodinamicheskie svojstva rastvora elektrolita.-M.: Vysshaya skola,1982.-320s.
- Grigor'ev, Evgenij Borisovich dissertaciya ... doktora tekhnicheskih nauk: 05.14.05,01.04.14 Kazan'2008.
- Filippov L.P. Issledovanie teploprovodnosti zhidkostej. -M.: Izd-vo MGU, 1970.-239s.

УДК 629.584

DOI: 10.34046/aumsuomt105/30

КОРРЕКТИРОВКА ПО ИНВАРИАНТАМ КОМАНД УПРАВЛЕНИЯ ДВИЖИТЕЛЯМИ ТЕЛЕУПРАВЛЯЕМОГО НЕОБИТАЕМОГО ПОДВОДНОГО АППАРАТА

И.М. Данцевич, кандидат технических наук, доцент

В статье предлагается разработка методов компенсации перекосов возникающих при задании следующих типов движения вперёд-назад, разворот влево-вправо, поворот налево-направо и их комбинации. Некомпенсированные упоры приводят к неконтролируемым разворотам телеуправляемых аппаратов при задании любого из типов управления. Управляемость подводных телеуправляемых аппаратов связана с ограниченностью поля зрения фототелевизионного комплекса в условиях искусственного освещения и ограниченной дальностью наблюдения, обычно 5-7 метров.

Разработанная методика может использоваться для различных телеуправляемых и автономных подвижных объектах, силовая установка которых построена на много движительной основе.

Ключевые слова: математическая модель, матрица преобразования командных сигналов, телеуправляемые необитаемые подводные комплексы (ТНПК), комбинированное управление многодвигательным комплексом, команды управления двигателями, коэффициенты передачи, упоры винтов.

ADJUSTMENT ACCORDING TO INVARIANTS OF THE PROPULSION CONTROL COMMANDS OF A REMOTE-CONTROLLED UNMANNED UNDERWATER VEHICLE

I.M. Dantsevich

The article proposes the development of methods for compensating for distortions occurring when specifying the following types of forward-backward movement, swinging port-starboard, turning to port-starboard and their combinations.

Uncompensated stops lead to uncontrolled turns of remote-controlled devices when setting any of the types of control. The controllability of underwater remote-controlled vehicles is associated with the limited field of view of the photo-television complex in conditions of artificial lighting and a limited observation range, usually 5-7 meters.

The developed technology can be used for various remote-controlled and autonomous mobile objects, the power plant of which is built on a multi-propulsion basis.

Keywords: mathematical model, command signal conversion matrix, Remotely Operated Vehicle (ROV), combined control of multi-engine complex. combined control of multi-engine complex, engine control commands, transmission factors, transmission ratios, screw stops.

Введение

Перемещение ТНПА при исследовании конструкции объекта должно осуществляться маневрированием аппарата на некотором достаточно близком расстоянии к объекту.

Контроллер управления движением ТНПА выполняет линейные преобразования векторов управления (или их комбинации) U_{ni} и выдачу на каждый из 4-х движителей [1-2; 5], как показано на рисунке 1:

где $N^* = (n_i^*)_{4 \times 1}$ – матрица преобразования сигналов управления; $A = (a_{ij})_{4 \times 3}$ – оператор преобразования (матрица коэффициентов).

Задание сигналов управления при полуавтоматическом управлении (с джойстика) или заданный программой интеллектуального управления тип движения обеспечивается комбинацией сигналов u_1 -упоры движителей «вперёд-назад» [3], u_2 - переключение полярности сигналов, обеспечивающих повороты «налево-направо», u_3 -переключение полярности сигналов, реализующих сдвиг «влево-вправо» [4-6; 7]:

$$n_i^* = \sum_{i=1}^3 a_{ii} u_i , \ (i \in 1, 4).$$

Управление перемещением аппарата в вертикальной плоскости реализуется другой группой движителей (обычно включает до 4-х движителей) и в статье не рассматриваются [6].

Рисунок 1 – Схема установки движителей ТНПА

Выражения (1-2) элементов матрицы преобразования А получены при условии, что все параметры, характеризующие тяговые характеристики носителя ТНПА, имеют строго номинальные значения. В реальных условиях те или иные параметры тяговых характеристик (углы установки движителей, координаты приложения векторов сил тяг, характер зависимости силы тяги каждого движителя от управляющих сигналов различной полярности, положение центра масс ТНПА в системе координат, связанной с носителем ТНПА, и т.п.) могут отличаться от номинальных значений [8-10].

В связи с этим возникает задача коррекции номинальных значений коэффициентов, вычисленных по формулам (1-2). Допустим, что каждый элемент матрицы А может корректироваться дополнительным коэффициентом:

$$a_{ij} = (a_{ij})_0 + \Delta a_{ij}, \ (i \in 1, 4, \ j \in 1, 3), \tag{3}$$

где $(a_{ij})_0$ - номинальное значение коэффициента $a_{ij}, \Delta a_{ij}$ - корректирующее значение коэффициента a_{ij} .

1. Моделирование динамики корректирующих значений коэффициентов управления ТНПА Для определения выражения корректирующих порций Δa_{ij} преобразуем формулы (1-2) к виду [11-13]:

$$\begin{aligned} a_{i1} &= (q_x)_0 + \Delta q_{ix}, \ (i \in 1,4); \\ a_{12} &= -\frac{1}{2} \Big((q_y)_0 + \Delta q_{1y} \Big) \bigg[1 + \frac{(q_y^*)_0}{(q_y)_0} + \left(1 - \frac{(q_y^*)_0}{(q_y)_0} \right) sign(u_2) \bigg]; \\ a_{42} &= -\frac{1}{2} \Big((q_y)_0 + \Delta q_{4y} \Big) \bigg[1 + \frac{(q_y^*)_0}{(q_y)_0} + \left(1 - \frac{(q_y^*)_0}{(q_y)_0} \right) sign(u_2) \bigg]; \\ a_{22} &= \frac{1}{2} \Big((q_y)_0 + \Delta q_{2y} \Big) \bigg[1 + \frac{(q_y^*)_0}{(q_y)_0} - \left(1 - \frac{(q_y^*)_0}{(q_y)_0} \right) sign(u_2) \bigg]; \\ a_{32} &= \frac{1}{2} \Big((q_y)_0 + \Delta q_{3y} \Big) \bigg[1 + \frac{(q_y^*)_0}{(q_y)_0} - \left(1 - \frac{(q_y^*)_0}{(q_y)_0} \right) sign(u_2) \bigg]; \\ a_{13} &= -\frac{1}{2} ((q_z)_0 + \Delta q_{1z}) \bigg[1 + \frac{(q_x^*)_0}{(q_z)_0} + \left(1 - \frac{(q_x^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{33} &= -\frac{1}{2} ((q_z)_0 + \Delta q_{3z}) \bigg[1 + \frac{(q_x^*)_0}{(q_z)_0} - \left(1 - \frac{(q_x^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_x^*)_0}{(q_z)_0} - \left(1 - \frac{(q_x^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \\ a_{43} &= \frac{1}{2} ((q_z)_0 + \Delta q_{4z}) \bigg[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \bigg]; \end{aligned}$$

где:
$$(q_x)_0 = (q_y)_0 = (q_z)_0 = \frac{n_m}{u_m};$$

 $(q_y^*) = (q_z^*)_0 = (q_z)_0 = \frac{n_m}{u_m} \cdot \frac{p_{min}}{p_{max}};$
 $\frac{(q_y^*)_0}{(q_y)_0} = \frac{(q_z^*)_0}{(q_z)_0} = \frac{p_{min}}{p_{max}};$
 $sign(u_j) = \begin{cases} 1, если u_j \ge 0, \\ -1, если u_j < 0, \\ j = 2,3; \end{cases}$
(5)

где: Δq_{ix} , Δq_{iy} , Δq_{iz} , $(i \in 1,4)$ – корректирующие коэффициенты, n_m – число дискретных уровней управления, u_m – задающий параметр управления, P_{min} – минимальное значение силы упора движителей, P_{max} – максимальное значение силы упора движителей [14].

Из выражений (4) получим:

$$\begin{aligned} \Delta a_{i1} &= \Delta q_{ix}, \ (i \in 1,4); \\ \Delta a_{12} &= -\frac{1}{2} \Delta q_{1y} \left[1 + \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} + \left(1 - \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} \right) sign(u_2) \right]; \\ \Delta a_{42} &= -\frac{1}{2} \Delta q_{4y} \left[1 + \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} + \left(1 - \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} \right) sign(u_2) \right]; \\ \Delta a_{22} &= \frac{1}{2} \Delta q_{2y} \left[1 + \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} - \left(1 - \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} \right) sign(u_2) \right]; \\ \Delta a_{32} &= \frac{1}{2} \Delta q_{3y} \left[1 + \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} - \left(1 - \frac{\left(q_y^*\right)_0}{\left(q_y\right)_0} \right) sign(u_2) \right]; \\ \Delta a_{13} &= -\frac{1}{2} \Delta q_{1z} \left[1 + \frac{\left(q_x^*\right)_0}{\left(q_z\right)_0} + \left(1 - \frac{\left(q_x^*\right)_0}{\left(q_z\right)_0} \right) sign(u_3) \right]; \\ \Delta a_{33} &= -\frac{1}{2} \Delta q_{3z} \left[1 + \frac{\left(q_x^*\right)_0}{\left(q_z\right)_0} + \left(1 - \frac{\left(q_x^*\right)_0}{\left(q_z\right)_0} \right) sign(u_3) \right]; \end{aligned}$$

(6)

$$\begin{split} \Delta a_{23} &= \frac{1}{2} \Delta q_{2Z} \left[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \right] ; \\ \Delta a_{43} &= \frac{1}{2} \Delta q_{4Z} \left[1 + \frac{(q_z^*)_0}{(q_z)_0} - \left(1 - \frac{(q_z^*)_0}{(q_z)_0} \right) sign(u_3) \right]. \end{split}$$

Из выражений (4) следует, что корректирующие коэффициенты Δa_{i2} , Δa_{i3} , $(i \in 1,4)$ зависят от полярности сигналов u₂ и u₃ и имеют таким образом по два значения, но фактически искомыми величинами независимо от полярности командных сигналов будут 12 коэффициентов, а именно комбинации из элементов Δq_{ix} , Δq_{iy} , Δq_{iz} , $(i \in 1,4)$.

Пусть значения параметров, от которых зависят тяговые характеристики $F = (P_x M_y P_z)^T$, отличаются от номинальных на величины, имеющие первый порядок малости:

$$\begin{aligned} x_{Pi} &= (x_{Pi})_0 + \Delta x_{Pi}, \ z_{Pi} &= (z_{Pi})_0 + \Delta z_{Pi}, \ \phi_i &= (\phi_i)_0 + \Delta \phi_i, \\ k_{Pi} &= \left(k_p\right)_0 + \Delta k_{pi}, \ k_{mi} &= (k_m)_0 + \Delta k_{mi}, \ (i \in 1, 4). \end{aligned}$$
(7)

Найдём зависимости тяговых характеристик $F = (P_x M_y P_z)^T$ от управляющих сигналов u_j , $j \in 1,3$ при раздельном управлении. В этом случае функции n_i , $i \in 1,4$ будут меняться в линейном диапазоне от $-n_m$ до $+n_m$.

Допустим, что при этом n_i , $i \in 1,4$ будут непрерывными функциями своих аргументов u_j , $j \in 1,3$ в соответствии с формулой:

$$n_i = n_i^* = \sum_{j=1}^3 a_{ij} u_j \, , \, (i \in 1, 4).$$
(8)

Подставим условия (7) в уравнение (8).

гле:

$$n_{i} = \sum_{j=1}^{3} \left[\left(a_{ij} \right)_{0} + \Delta a_{ij} \right] u_{j} = (n_{i})_{0} + \Delta n_{i} , \quad (i \in 1, 4),$$

$$(n_{i})_{0} = \sum_{i=1}^{3} \left(a_{ij} \right)_{0} u_{i}, \quad \Delta n_{i} = \sum_{i=1}^{3} \Delta a_{ij} u_{i} , \quad (i \in 1, 4).$$
(9)

Силы тяги можно определить по формулам:

$$P_{i} = \frac{1}{2} [k_{p} + k_{m} + (k_{p} - k_{m}) sign((n_{i})_{0})] n_{i} = (P_{i})_{0} + \Delta P_{i},$$

$$(P_{i})_{0} = \frac{1}{2} [(k_{p})_{0} + (k_{m})_{0} + ((k_{p})_{0} - (k_{m})_{0}) sign((n_{i})_{0})] (n_{i})_{0},$$

$$\Delta P_{i} = \frac{1}{2} [\Delta k_{pi} + \Delta k_{mi} + (\Delta k_{pi} - \Delta k_{mi}) sign((n_{i})_{0})] (n_{i})_{0} + \frac{1}{2} [(k_{p})_{0} + (k_{m})_{0} + ((k_{p})_{0} - (k_{m})_{0}) sign((n_{i})_{0})] \Delta n_{i}, (i \in 1, 4).$$
(10)

2. Управление движителями по инвариантам цифровых двойников

Рассмотрим вариант управление движением вперёд-назад, в этом случае $u_1 \neq 0$, $u_2=u_3=0$. При положительном сигнале u_1 силы тяги всех движителей направлены вперёд:

$$(n_{i})_{0} = (q_{x})_{0}u_{1} > 0, \ \Delta n_{i} = \Delta q_{ix}u_{1},$$

$$P_{i} = \left[\left(k_{p} \right)_{0} + \Delta k_{p} \right] [(q_{x})_{0} + \Delta q_{ix}]u_{1} = (P_{i})_{0} + \Delta P_{i},$$

$$(P_{i})_{0} = \left(k_{p} \right)_{0} (q_{x})_{0}u_{1} > 0,$$

$$\Delta P_{i} = \Delta k_{p} (q_{x})_{0}u_{1} + \left(k_{p} \right)_{0} \Delta q_{ix}u_{1}, \quad i \in 1, 4.$$
(11)
Запишем выражения для перекрёстных тяговых усилий M_{y}, P_{z} :

$$M_{y} = \sum_{i=1}^{4} P_{i}(z_{P_{i}} \sin(\phi_{i}) - x_{P_{i}} \cos(\phi_{i})) = (M_{y})_{0} + \Delta M_{y},$$

$$P_{y} = \sum_{i=1}^{4} P_{i}(z_{P_{i}} \sin(\phi_{i}) - x_{P_{i}} \cos(\phi_{i})) = (M_{y})_{0} + \Delta M_{y},$$
(12)

 $P_{z} = \sum_{i=1}^{4} P_{i} \cos(\phi_{i}) = (P_{z})_{0} + \Delta P_{z}$. (12) В формулах (12) момент $(M_{y})_{0}$ и сила $(P_{z})_{0}$ равны нулю, так как они определены при номинальных значениях параметров, что соответствует движению в продольной оси.

Вариации ΔM_{ν} , ΔP_z запишутся в виде:

$$\Delta M_{\gamma} = \Delta M_{\gamma}^{\mathrm{B}}(u_{1}^{+}) + \Delta M_{\gamma}^{\mathrm{K}}, \quad \Delta P_{z} = \Delta P_{z}^{\mathrm{B}}(u_{1}^{+}) + \Delta P_{z}^{\mathrm{K}}, \tag{13}$$

где $\Delta M_y^{\text{B}}(u_1^+)$, $\Delta P_z^{\text{B}}(u_1^+)$ - вариации перекрёстных управляющих воздействий, вызванные возмущающими факторами, при $u_1 > 0$; ΔM_y^{K} , ΔP_z^{K} - корректирующие вариации перекрёстных управляющих воздействий, необходимые для компенсации возмущений.

Для наборов сигналов управления $\Delta M_y^{\rm B}(u_1^+)$, $\Delta P_z^{\rm B}(u_1^+)$, $\Delta M_y^{\rm K}$, $\Delta P_z^{\rm K}$ получим выражения:

$$\Delta M_{y}^{B}(u_{1}^{+}) = \sum_{i=1}^{1} \{ (P_{i})_{0} [\Delta z_{Pi} \sin((\phi_{i})_{0}) - \Delta x_{Pi} \cos((\phi_{i})_{0}) + \Delta x_{Pi} \cos((\phi_{i$$

$$+ ((z_{p_{l}})_{0} \cos((\phi_{l})_{0}) + (x_{p_{l}})_{0} \sin((\phi_{l})_{0}))\Delta\phi_{l}] + \\ + [(z_{p_{l}})_{0} \sin((\phi_{l})_{0}) - (x_{p_{l}})_{0} \cos((\phi_{l})_{0})](q_{x})_{0}\Delta k_{p}u_{1};$$

$$\Delta P_{z}^{\text{B}}(u_{1}^{+}) = \sum_{i=1}^{4} [\cos((\phi_{l})_{0}) (q_{x})_{0}\Delta k_{p}u_{1} - (P_{l})_{0} \sin((\phi_{l})_{0})\Delta\phi_{l}];$$

$$(14)$$

$$\Delta M_{y}^{\text{K}} = \sum_{i=1}^{4} [(z_{p_{l}})_{0} \sin ((\phi_{l})_{0}) - (x_{p_{l}})_{0} \cos ((\phi_{l})_{0})](k_{p})_{0}\Delta q_{lx}u_{1};$$

$$\Delta P_{z}^{\text{K}} = \sum_{i=1}^{4} \cos ((\phi_{l})_{0}) (k_{p})_{0}\Delta q_{ix}u_{1}.$$

$$(15)$$

$$C$$

$$Y$$

$$C$$

$$Y$$

$$\Delta M_{\mathcal{Y}}^{\kappa} = \frac{\sqrt{2}}{2} \frac{P_{max}}{n_{m}(a+b)(\Delta q_{1x} - \Delta q_{2x} - \Delta q_{3x} + \Delta q_{4x})u_{1}};$$

$$\Delta P_{z}^{\kappa} = \frac{\sqrt{2}}{2} \frac{P_{max}}{n_{m}(-\Delta q_{1x} + \Delta q_{2x} - \Delta q_{3x} + \Delta q_{4x})u_{1}}.$$
(17)

Введём новые переменные, замену разностям:

$$\mu_{12} = \Delta q_{1x} - \Delta q_{2x}, \ \mu_{34} = \Delta q_{3x} - \Delta q_{4x}.$$
(18)

$$\mu_{12} = \Delta q_{1x} - \Delta q_{2x}, \ \mu_{34} = \Delta q_{3x} - \Delta q_{4x}.$$

Подставляя новые переменные (17) в (18), получим:

$$\Delta M_{y}^{\kappa} = \frac{\sqrt{2}}{2} \frac{P_{max}}{n_{m}(a+b)(\mu_{12}-\mu_{34})u_{1}}; \quad \Delta P_{z}^{\kappa} = \frac{\sqrt{2}}{2} \frac{P_{max}}{n_{m}(-\mu_{12}-\mu_{34})u_{1}}.$$
(19)

Рассмотрим оалансировочный режим, при котором выражения (19) равны нулю:

$$\Delta M_y^{\rm B}(u_1^+) + \Delta M_y^{\rm K} = 0, \quad \Delta P_z^{\rm B}(u_1^+) + \Delta P_z^{\rm K} = 0.$$
(20)

С учётом сделанных допущений уравнения (18) запишутся так:

$$\mu_{12} - \mu_{34} = -\sqrt{2} \frac{n_m}{(a+b)} \frac{\Delta M_y^{\rm B}(u_1^+)}{u_1 P_{max}};$$

$$\mu_{12} + \mu_{34} = \sqrt{2} n_m \frac{\Delta P_z^{\rm B}(u_1^+)}{u_1 P_{max}}.$$
(21)
При отрицательном сигнале u₁ силы тяги всех движителей направлены назад:

 $(n_i)_0 = (q_r)_0 u_1 < 0, \ \Delta n_i = \Delta q_{ir} u_1.$

$$\begin{aligned} P_i &= [(k_m)_0 + \Delta k_m][(q_x)_0 + \Delta q_{ix}]u_1 = (P_i)_0 + \Delta P_i, \\ (P_i)_0 &= (k_m)_0(q_x)_0u_1 < 0, \\ \Delta P_i &= \Delta k_m(q_x)_0u_1 + (k_m)_0\Delta q_{ix}u_1, \quad i \in \mathbf{1}, 4.(22) \end{aligned}$$

Вариации перекрёстных управляющих воздействий, вызванные возмущающими факторами при $u_1 < 0$, обозначим $\Delta M_{\nu}^{\rm B}(u_1^-)$, $\Delta P_z^{\rm B}(u_1^-)$.

Для вариаций $\Delta M_y^{\text{B}}(u_1^-)$, $\Delta P_z^{\text{B}}(u_1^-)$, ΔM_y^{K} , ΔP_z^{K} получим выражения:

$$\Delta M_{y}^{B}(u_{1}^{-}) = \sum_{i=1}^{4} \{ (P_{i})_{0} [\Delta z_{Pi} \sin((\phi_{i})_{0}) - \Delta x_{Pi} \cos((\phi_{i})_{0})] + \\ + ((z_{Pi})_{0} \cos((\phi_{i})_{0}) + (x_{Pi})_{0} \sin((\phi_{i})_{0})) \Delta \phi_{i}] + \\ + [(z_{Pi})_{0} \sin((\phi_{i})_{0}) - (x_{Pi})_{0} \cos((\phi_{i})_{0})] (q_{x})_{0} \Delta k_{m} u_{1} \}; \\ \Delta P_{z}^{B}(u_{1}^{-}) = \sum_{i=1}^{4} [\cos((\phi_{i})_{0}) (q_{x})_{0} \Delta k_{m} u_{1} - (P_{i})_{0} \sin((\phi_{i})_{0}) \Delta \phi_{i}];$$
(23)
$$\Delta M_{y}^{K} = \sum_{i=1}^{4} [(z_{Pi})_{0} \sin(((\phi_{i})_{0}) - (x_{Pi})_{0} \cos(((\phi_{i})_{0})] (k_{m})_{0} \Delta q_{ix} u_{1}; \\ \Delta P_{z}^{K} = \sum_{i=1}^{4} \cos(((\phi_{i})_{0}) (k_{m})_{0} \Delta q_{ix} u_{1}.$$
(24)
C учётом сделанных допущений (19) выражения (24) примут вид:
$$\Delta M_{y}^{K} = \frac{\sqrt{2}}{2} \frac{P_{min}}{n_{m}(a+b)(\Delta q_{1x} - \Delta q_{2x} - \Delta q_{3x} + \Delta q_{4x})_{1}};$$
(25)

$$\Delta P_{y}^{\kappa} = \frac{\sqrt{2}}{2} \frac{P_{min}}{n_{m}(a+b)(\mu_{12}-\mu_{34})_{1}};$$

$$\Delta P_{z}^{\kappa} = \frac{\sqrt{2}}{2} \frac{P_{min}}{n_{m}(-\mu_{12}-\mu_{34})_{1}};$$
(25)

Следующим шагом примем равными нулю перекрёстные составляющие сил и моментов, возникающие вследствие ошибок описанными уравнением (12):

$$\Delta M_{y}^{\rm B}(u_{1}^{-}) + \Delta M_{y}^{\rm K} = 0, \quad \Delta P_{z}^{\rm B}(u_{1}^{-}) + \Delta P_{z}^{\rm K} = 0.$$
⁽²⁶⁾

Подставим в уравнения (26) выражения (25) для перекрёстных корректирующих управляющих воздействий и преобразуем их к виду:

$$\mu_{12} - \mu_{34} = -\sqrt{2} \frac{n_m}{(a+b)} \frac{\Delta M_y^{\text{B}}(u_1^-)}{u_1 P_{min}};$$

$$\mu_{12} + \mu_{34} = \sqrt{2} n_m \frac{\Delta P_z^{\text{B}}(u_1^-)}{u_1 P_{min}}.$$
(27)

Сравним уравнения (20) и (27). Отношения $\frac{\Delta M_y^B(u_1^+)}{u_1}$, $\frac{\Delta P_z^B(u_1^+)}{u_1}$ для серии замеров величин $\Delta M_y^B(u_{1j}^+)$, $\Delta P_z^B(u_{1j}^+)$, $j \in 1, N$ при различных значениях u_{1j} , $j \in 1, N$ можно определить как крутизну соответствующих экспериментальных характеристик $\Delta M_y^B(u_1^+) = f_{1p}(u_1)$, $\Delta P_z^B(u_1^+) = f_{2p}(u_1)$, аппроксимированных уравнениями сплайнами:

$$\Delta M_{y}^{B}(u_{1}^{+}) = \alpha_{p} + M_{y}^{u_{1}^{+}}u_{1}, \ \Delta P_{z}^{B}(u_{1}^{+}) = \beta_{p} + P_{z}^{u_{1}^{+}}u_{1}.$$
⁽²⁸⁾

Коэффициенты уравнений (28) можно определить по результатам стендовых испытаний методом наименьших квадратов (делая допущение, что коэффициенты α_p и β_p должны быть близки к нулю). Тогда при расчёте поправок μ_{12} , μ_{34} в уравнения (20) вместо отношений $\frac{\Delta M_y^{\text{B}}(u_1^+)}{u_1}$, $\frac{\Delta P_z^{\text{B}}(u_1^+)}{u_1}$ следует подставить $\frac{\Delta M_y^{\text{B}}(u_1^+)}{u_1} \approx M_y^{u_1^+}$, $\frac{\Delta P_z^{\text{B}}(u_1^+)}{u_1} \approx P_z^{u_1^+}$.

Также как и при $u_1 < 0$, придём к выводу, что $\frac{\Delta M_y^{\mathbb{B}}(u_1^-)}{u_1} \approx M_y^{u_1^-}$, $\frac{\Delta P_z^{\mathbb{B}}(u_1^-)}{u_1} \approx P_z^{u_1^-}$, где $M_y^{u_1^-}$, $P_z^{u_1^-}$ - коэффициенты линейных уравнений:

$$\Delta M_y^{\rm B}(u_1^-) = \alpha_m + M_y^{u_1^-} u_1, \ \Delta P_z^{\rm B}(u_1^-) = \beta_m + P_z^{u_1^-} u_1, \tag{29}$$

аппроксимирующих экспериментальные характеристики $\Delta M_y^{\text{B}}(u_1^-) = f_{1m}(u_1), \ \Delta P_z^{\text{B}}(u_1^-) = f_{2m}(u_1).$

Следует ожидать, что отношения $\frac{M_y^{u_1^{\dagger}}}{P_{max}}$, $\frac{P_z^{u_1^{\dagger}}}{P_{max}}$ будут близки отношениям $\frac{M_y^{u_1^{-}}}{P_{min}}$, $\frac{P_z^{u_1^{-}}}{P_{min}}$, так как при положительном сигнале u_1 на единицу изменения сигнала приходится большее изменение силы тяги каждого движителя, чем при отрицательном в силу нелинейности тяговых характеристик движителей, что должно привести к соответствующей не симметрии характеристик $\Delta M_y^{\rm B}(u_1) = f_1(u_1)$, $\Delta P_z^{\rm B}(u_1) = f_2(u_1)$ при различных полярностях сигнала u_1 . Причём, можно ожидать, что коэффициенты наклона аппроксимирующих линейных зависимостей (28) и (29) относятся друг к другу так же, как коэффициенты наклона тяговых характеристик:

$$k_{p} = \frac{P_{max}}{n_{m}}, k_{m} = \frac{P_{min}}{n_{m}}, sign(n_{i}) = \begin{cases} 1, если n_{i} \ge 0, \\ -1, если n_{i} < 0 \end{cases}$$
(30)

$$\frac{M_y^z}{M_y^z} \approx \frac{P_z^z}{P_z^-} \approx \frac{k_p}{k_m} = \frac{P_{max}}{P_{min}}$$
(31)

Введём обозначения осреднённых оценок математических ожиданий отношений $\frac{M_y^{u_1^-}}{P_{max}}, \frac{P_z^{u_1^+}}{P_{min}}, \frac{M_y^{u_1^-}}{P_{min}}, \frac{P_z^{u_1^-}}{P_{min}}, \frac{P_z^{u_1^-}}{P_{min$

$$h_{y}^{u_{1}} = \frac{1}{2} \cdot \left[M \left\{ \frac{M_{y}^{u_{1}}}{P_{max}} \right\} + M \left\{ \frac{M_{y}^{u_{1}}}{P_{min}} \right\} \right];$$

$$h_{z}^{u_{1}} = \frac{1}{2} \cdot \left[M \left\{ \frac{P_{z}^{u_{1}^{+}}}{P_{max}} \right\} + M \left\{ \frac{P_{z}^{u_{1}^{-}}}{P_{min}} \right\} \right].$$
(32)

С учётом обозначений (32) уравнения (21) и (27) запишем:

$${}_{2} - \mu_{34} = -\sqrt{2} \frac{m_{m}}{(a+b)} h_{y}^{u_{1}};$$

$$\mu_{12} + \mu_{34} = \sqrt{2} n_{m} h_{z}^{u_{1}}.$$
 (33)

Решение уравнений (33):

_ n

 μ_1

$$u_{12} = \frac{\sqrt{2}}{2} n_m \left(h_z^{u_1} - \frac{h_y^{u_1}}{(a+b)} \right); \ \mu_{34} = \frac{\sqrt{2}}{2} n_m \left(h_z^{u_1} + \frac{h_y^{u_1}}{(a+b)} \right).$$
(34)

Подставив (33) в выражения (18), найдём поправочные коэффициенты Δq_{1x} , Δq_{2x} , Δq_{3x} , Δq_{4x} из условия, что сумма квадратов их значений будет минимальной. В итоге получим:

$$\Delta q_{1x} = \frac{1}{2}\mu_{12} = \frac{\sqrt{2}}{4}n_m \left(h_z^{u_1} - \frac{h_y^{u_1}}{(a+b)}\right);$$

$$\Delta q_{2x} = -\frac{1}{2}\mu_{12} = -\frac{\sqrt{2}}{4}n_m \left(h_z^{u_1} - \frac{h_y^{u_1}}{(a+b)}\right);$$

$$\Delta q_{3x} = \frac{1}{2}\mu_{34} = \frac{\sqrt{2}}{4}n_m \left(h_z^{u_1} + \frac{h_y^{u_1}}{(a+b)}\right);$$

$$\Delta q_{4x} = -\frac{1}{2}\mu_{34} = -\frac{\sqrt{2}}{4}n_m \left(h_z^{u_1} + \frac{h_y^{u_1}}{(a+b)}\right).$$
(35)

Оценим результаты работы проверочным расчётом, также возьмём вариант 1 (управление по сигналу U1).

На основании таблицы 1 (откалиброванные значения сигналов управления и упоров движителей, полученные в бассейне) линеаризуем методом наименьших квадратов характеристики $M_y(U_1)$, $P_z(U_1)$ при различных полярностях сигнала U1 в соответствии с формулами (31) и (32):

$$\Delta M_{y}^{B}(u_{1}^{-}) = \alpha_{m} + M_{y}^{u_{1}^{-}}u_{1}, \ \Delta P_{z}^{B}(u_{1}^{-}) = \beta_{m} + P_{z}^{u_{1}^{-}}u_{1};$$

$$\Delta M_{y}^{B}(u_{1}^{+}) = \alpha_{p} + M_{y}^{u_{1}^{+}}u_{1}, \ \Delta P_{z}^{B}(u_{1}^{+}) = \beta_{p} + P_{z}^{u_{1}^{+}}u_{1};$$
(36)
$$r_{A}e \alpha_{m} = 0,0017; \ M_{y}^{u_{1}^{-}} = 1,2374; \ , \ \beta_{m} = 0,00083; \ P_{z}^{u_{1}^{-}} = -1,0879;$$

$$\alpha_{p} = -0,00083; \ M_{y}^{u_{1}^{+}} = 2,0871; \beta_{p} = -0,00083; \ P_{z}^{u_{1}^{+}} = -1,4379.$$

Таблица 1 – Значения сигналов управления и упоров движителей, полученные в бассейне (движителей Model 1020) с максимальным упором вперёд P_{max}= 21,4 кгс и максимальным упором назад P_{min} = 14,5 кгс;

тобиет того) с макенмальным упором вперед т тах 21,4 кге и макенмальным упором наз						ором пазад т	1+,5 KIC,
U ₁ [B]	P _x [H]	Му [Нм]	$P_{z}[H]$	$P_1[H]$	$P_2[H]$	P ₃ [H]	$P_4[H]$
-14	-367.04	-17.32	15.23	-146.38	-116.74	-121.03	-129.61
-12	-314.6	-14.85	13.06	-116.98	-100.06	-103.74	-111.1
-10	-262.17	-12.37	10.88	-97.49	-83.39	-86.45	-92.58
-8	-209.73	-9.9	8.7	-77.99	-66.71	-69.16	-74.07
-6	-157.3	-7.42	6.53	-58.49	-50.03	-51.87	-55.55
-4	-104.87	-4.95	4.35	-38.99	-33.35	-34.58	-37.03
-2	-52.43	-2.47	2.18	-19.5	-16.68	-17.29	-18.52
0	0	0	0	0	0	0	0
2	77.27	4.17	-2.88	28.82	24.28	25.14	27.84
4	154.53	8.35	-5.75	57.63	48.56	50.28	55.67
6	231.8	12.52	-8.63	86.45	72.84	75.41	83.51
8	309.07	16.7	-11.5	115.27	97.12	100.55	111.34
10	386.33	20.87	-14.38	144.08	121.4	125.69	139.18
12	463.6	25.04	-17.26	172.9	145.68	150.83	167.02
14	540.86	28.22	-20.13	201.72	169.96	175.97	194.85

По формуле (32) найдём коэффициенты $h_y^{u_1}$, $h_z^{u_1}$:

 $h_{y}^{u_{1}} = 0,00932; \quad h_{z}^{u_{1}} = -0,00725.$

По формулам (35) получим значения корректирующих коэффициентов:

 $\Delta q_{1x} = -1,031; \quad \Delta q_{2x} = 1,031; \\ \Delta q_{3x} = 0,375; \quad \Delta q_{4x} = -0,375.$

Числовые значения функций $P_x(U_1)$, $M_y(U_1)$, $P_z(U_1)$ из таблицы 1 и таблицы 2 поместим в таблице 3. В последней строке таблицы, поименованной символом σ , вычислены стандартные отклонения для данных, приведённых в столбцах, относительно нуля.

Таблица 2 – Рассчитанные корректуры движительно-рулевого комплекса

количество уровней сигнала команды n _m =12отклонения P _{max} от номинала в кгс									
dpmax1			lpmax2 dpr		dpmax3	dpmax4			
	2.1		-1.6	-0.9		1.3			
отклонения Р _{тіп} от номинала в кгс									
dp	dpmin1		dpmin2	dpmin3		dpmin4			
	1.4		-0.9	-0.4		0.6			
коэффициенты модели движителей									
kp1	kp2	kp3	kp4	km1	km2	km3	km4		
1.801	1.517	1.571	1.74	1.219	1.042	1.081	1.157		
координаты точек приложения сил тяги, м									
xp1	xp2	xp3	xp4	zp1	zp2	zp3	zp4		
0.32	0.285	-0.27	-0.322	0.286	-0.321	-0.27	0.282		
углы установки движителей, радиан									

количество уровней сигнала команды n _m =12отклонения P _{max} от номинала в кгс										
fī ₁		fi2		fi3		fi4				
2.382		0.829		2.304		0.846				
Номинальные значения передаточных коэффициентов										
k _{p0}	k _{pm}	q _x	q_y	qz	q_{ys}	q _{zs}				
1.64	1.111	8	8	8	5.421	5.421				
Корректирующие значения передаточных коэффициентов										
dq _{x1}			dq _{x2}	dq _{x3}		dq _{x4}				
-1.031			1.031 0.375		-0.375					
dq _{y1}			d _{qy2}	dq _{y3}		dq _{y4}				
0			0	0		0				
dq _{z1}			dq _{z2}	dq _{z3}		dq _{z4}				
0			0	0		0				
матрица корректур (коэффициентов) упоров движителей на направление движения										
		упоры движителей								
Силы	P1		P_2	P3			P_4			
Fx	0.6884	(.7373	0.7431			0.749			
My	0.429).4292	-0.3813			0.4246			
Fz	-0.7254	(.6756	-0.6691			0.6626			

Таблица 3 - Откорректированные значения сил и моментов по типу управления U1

U1		Без коррекции		С коррекцией			
	Px	My	Pz	P _{xk}	Myk	P _{zk}	
	Н	Нм	Н	Н	Нм	Н	
-14	-367,04	-17,32	15,23	-365,73	0,78	0,45	
-12	-314,6	-14,85	13,06	-314,31	0,82	0,68	
-10	-262,17	-12,37	10,88	-261,21	0,94	0,96	
-8	-209,73	-9,9	8,7	-208,98	0,57	0,47	
-6	-157,3	-7,42	6,53	-156,75	0,2	-0,02	
-4	-104,87	-4,95	4,35	-105,33	0,25	0,21	
-2	-52,43	-2,47	2,18	-52,23	0,37	0,49	
0	0	0	0	0	0	0	
2	77,27	4,17	-2,88	76,89	-0,01	-0,42	
4	154,53	8,35	-5,75	155,08	0,71	0,32	
6	231,8	12,52	-8,63	230,8	1,3	0,95	
8	309,07	16,7	-11,5	307,69	1,29	0,54	
10	386,33	20,87	-14,38	384,58	1,28	0,12	
12	463,6	25,04	-17,26	462,77	2,01	0,86	
14	540,86	29,22	-20,13	538,49	2,59	1,49	
σ	291,3615	14,9889	11,3241	290,4278	0,7335	0,4765	

На рисунке 2 приведены графики функций $P_x(U_1)$, $M_y(U_1)$, $P_z(U_1)$, построенные по данным таблицы 3.

Как видно из графиков скорректированные значения сил и моментов близки к линейным значениям. Хорошие результаты удалось получить, скомпенсировав значения $P_x(U_1)$, $M_y(U_1)$, $P_z(U_1)$, особенно относительно момента и сил в поперечной плоскости ТНПА.

Устранение предложенным методом возникающих моментов и сил в поперечной плоскости при движении в продольной плоскости ТНПА позволяет за счёт компенсации ошибок и паразитных сил выровнять систему движителей и обеспечить пропорциональное управление ДРК, как в полуавтоматическом режиме, так и в программном управлении.

Скомпенсированное управление при реализации регуляторов упоров ДРК облегчает задачу синтеза системы управления по наблюдаемой динамике, перспективной считается задача масштабирование системы управления, т.е. пропорциональное управление при нелинейных характеристиках упоров движителей как в режимах малого сигнала, так и высокой крутизны регулировочной характеристики.

Вывод

Синтезированный в работе численный метод компенсации ошибок управления движителями двигательно-рулевого комплекса позволяет решить задачу согласования упоров движителей телеуправляемого необитаемого аппарата при прямолинейном движении. Рассмотрены влияющие величины, и определен научно методический аппарат компенсации ошибок установки движителей, неравномерности упоров (тяги), отклонений параметров винтовых характеристик и других параметров.

В управлении необитаемыми телеуправляемыми аппаратами, единая система движителей используется как для маршевого перемещения, так и для маневрирования. Формируемая система команд при скомпенсированном типе управления позволяет реализовывать функции авторулевого и масштабируемый тип управления, позволяющий также эффективно производить работу бортовым комплектом инструментов и манипуляторов. **Литература**

1. Данцевич И. М., Лютикова М. Н., Метревели Ю. Ю. Формализация задачи движе-

ния в продольно-поперёчной плоскости телеуправляемых подводных аппаратов //Морские интеллектуальные технологии. – 2021. – Т. 4. – № 2. – С. 168-177.

- Данцевич И. М., Лютикова М. Н. Моделирование нейросетевой структуры многослойного управления телеуправляемого подводного аппарата (ТПА) //Вестник государственного морского университета имени адмирала Ф.Ф. Ушакова. – 2015. – № 1. – С. 25-26.
- Данцевич И.М. Разработка малогабаритного телеуправляемого необитаемого подводного аппарата гибридной компоновки //Морские интеллектуальные технологии. – 2022. – № 3-1 (57). – С. 147-152.
- Лютикова М.Н., Данцевич И.М., Панькина С.И. Интеллектуальная подводная лаборатория // Серия конференций ІОР: Наука о Земле и окружающей среде. – ІОР Publishing, – 2021. – Т. 872. – №. 1. – С. 012003.
- 5. Данцевич И. М., Лютикова М. Н. Результаты исследования управления системой

«Судно-забортное оборудование» в продольно-вертикальной плоскости //Эксплуатация морского транспорта. – 2021. – №. 3. – С. 76-81.

- Лютикова М.Н. Совершенствование управлением многоцелевым буксируемым комплексом с применением нейросетевого контроллера в асимптотике полиномов Бернштейна//Морские интеллектуальные технологии. – 2022. – Т. 3. – № 3. – С. 153-159.
- Игнатиади Е. К., Петушок И. К. Концепция моделирования внешней среды для морских робототехнических комплексов //ЭКСТРЕМАЛЬНАЯ РОБОТОТЕХНИКА Учредители: Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики. – 2021. – Т. 1. – №. 1. – С. 292-295.
- Лебедев А. О., Лебедева М. П., Хомяков А. А. Общий подход к расчету параметров движения подводного аппарата //Морские интеллектуальные технологии. – 2019. – С. 10.
- Овчинников К.Д., Синишин А.А., Белая А.Б., Рыжов В.А. Исследо-вание влияния параметров рулевой системы на характеристики управляемости волнового глайдера //Морские интеллектуальные технологии. 2021. –. Т. 1 № 3. С.44-49.
- Шилль Ф.С. Распределенная связь в роях автономных подводных аппаратов. – Австралийский национальный университет. 2007. – №. THESIS_LIB.
- 11. Нимейер, Гюнтер и др. «Телеробототехника». Справочник Springer по робототехнике. Спрингер, Чам, 2016. 1085–1108.
- 12. Сяо Ю., Ли Т. (ред.). Умные корабли. КПР Пресс, 2022.
- Рулевский В. М., Ляпунов Д. Ю. Математическое моделирование системы электропитания телеуправляемого необитаемого подводного аппарата с передачей энергии по кабель-тросу на переменном токе в пакете Matlab/Simulink //Современные проблемы науки и образования. – 2015. – №. 2-1. – С. 210-210.
- Лукомский Ю.А., Чугункин В.С. Системы управления морскими подвижными объектами: Учебник – Л.: Судостроение, 1988. – 272 с.

References

 Dantsevich I. M., Lyutikova M. N., Metreveli Yu. Yu. Formalization of the problem of movement in the longitudinal-transverse plane of tele-controlled underwater vehicles//Marine intelligent technologies. – 2021. – T. 4. – №. 2. – C. 168-177.

- Dantsevich I. M., Lyutikova M. N. Modeling of the neural network structure of the multilayer control of a remote-controlled underwater vehicle (TPA)//Bulletin of Admiral F.F. Ushakov State Maritime University. – 2015. – №. 1. - C. 25-26.
- Dantsevich I.M. Development of a small-sized remote-controlled unmanned underwater vehicle of a hybrid arrangement//Marine intelligent technologies. – 2022. – № 3-1 (57). C. 147-152.
- Lyutikova M. N., Dantsevich I. M., Pankina S. I. The intelligent underwater laboratory //IOP Conference Series: Earth and Environmental Science. – IOP Publishing, 2021. – T. 872. – №. 1. – C. 012003.
- Dantsevich I. M., Lyutikova M. N. Results of the study of the control of the Ship-Sea Equipment system in the longitudinal-vertical plane//Operation of sea transport. – 2021. – №. 3. - C. 76-81.
- Lyutikova M.N. Improving the control of a multipurpose towed complex using a neural network controller in the asymptotics of Bernstein polynomials//Marine intelligent technologies. - 2022. -Vol. 3. - No. 3. - S. 153-159.
- Ignatiadi E.K., Petushok I.K. Concept of environmental modeling for marine robotic complexes//EXTREME ROBOTICS Founders: Central Research and Development Institute of Robotics and Technical Cybernetics. 2021. T. 1. №. 1. S. 292-295.
- Lebedev A. O., Lebedeva M. P., Khomyakov A. A. General approach to calculating the motion parameters of an underwater vehicle//Marine intelligent technologies. – 2019. - C. 10.
- Ovchinnikov K.D., Sinishin A.A., Belaya A.B., Ryzhov V.A. Investigation of the influence of steering system parameters on the controllability characteristics of a wave glider//Marine intelligent technologies. – 2021. –. T. 1 - NO. 3. - C.44-49.
- Schill F.S. Distributed communications in swarms of autonomous underwater vehicles. - Australian National University, 2007. – №. THESIS_LIB.
- Niemeyer, Gunther et al. "Telerobototechnika." Springer's Guide to Robotics. Springer, Cham, 2016. 1085–1108.
- 12. Xiao Yu, Li T. (ed.). Smart ships. QPR Press, 2022.
- Rulevsky V. M., Lyapunov D. Yu. Mathematical modeling of the power supply system of a remotecontrolled uninhabited underwater vehicle with power transmission via an AC cable in the Matlab/Simulink//Modern problems of science and education. – 2015. – №. 2-1. - C. 210-210.
- Lukomsky Yu.A., Chugunkin V.S. Systems for managing marine moving objects: Textbook - L.: Shipbuilding, 1988. - 272 c.