Abstract and keywords
Abstract (English):
The change in the geometry of a macrocrack in the process of its growth is a consequence of the mechanisms that occur under the effect of variable amplitude loads. Known solutions consider an absolutely sharp crack in a linearly elastic material, which leads to a singularity of stresses and accordingly to a tendency of infinite magnitudes of stresses in front of the crack. Well-known experimental studies show that the stresses in front of a crack can be several times higher than the yield strength of a material but still take final values. The paper analyzes the results of well-known studies on the behavior of a moving macrocrack in various stress-strain states. It is shown that the kinetics of the geometry of a growing crack differs noticeably from similar characteristics of a fixed crack, primarily due to the formation of a plastically deformed material on the crack sides. In the case of the implementation of a plane stress state in front of a crack the effect of the crack sides closing appears, significantly reducing the effective magnitude of the stress intensity factor and, accordingly, the crack growth rate. It is proposed to consider as a promising direction the transition to solving a threedimensional problem before the tip of the crack as is done in SY-models.

Keywords:
structural element, macrocrack, stress state, stress intensity factor, plastic zone
Text
Publication text (PDF): Read Download
References

1. Griffith, A A. Pte phenomena of rupture and flow in solids / A.A. Griffith // Philos. Trans. Of Roy. Sou. of London. - 1920. - Ser. A. - Vol. 221. - P. 163-198.

2. Irwin, G. R. Analysis of stresses and strains near the end of a crack traversing a plate / G. R. Irwin // ASME J. Appl. Mech. - 1957. - Vol. 24. - P. 361-364.

3. Fayvisovich, A.V. Priblizhennyy metod ocenki prodolzhitel'nosti nachal'noy stadii ustalostnogo razrusheniya sudovyh grebnyh valov/ A.V. Fayvisovich, M.N. Chura // Transportnoe delo Rossii. -2011. - №10. - S.79-80.

4. Chura, M.N. Ekspluatacionnye povrezhdeniya greb nyh valov / M.N. Chura, A.V. Fayvisovich // Transportnoe delo Rossii. - 2011. - №11. - S. 110.- 112.

5. Riddell, W.T. Detennining fatigue crack opening loads from near-crack-tip displacement measurements / W.T. Riddell, R.S. Piascik, M.A. Sutton, W. Zhao, S.R. McNeill, J.D. Helm // American Society for Testing and Materials. - 1999. - P. 157 - 174.

6. Liu, Y. A simple analytical crack tip opening displace ment approximation under random variable loadings / Y. Liu, Z. Lu, J. Xu // International Journal of Fracture.-2012.-Vol. 173. - P. 189-201.

7. Lu, Z. Alt incremental crack growth model for multi scale fatigue analysis / Z.Lu, Y. Liu // In 50th AIAA/ASME/ASCE/AHS/ASC Structural Dynamics and Materials Conference. - 2009.

8. Lu, Z. Curvilinear fatigue crack growth simulation and validation under constant amplitude and overload loadings / Z. Lu, J. Xu, L. Wang, J. Zhang, Y. Liu // Journal of Aerospace Engineering. - 2015. - Vol. 28.

9. Xiang, Y. Equivalent stress transformation for efficient probabilistic fatigue crack growth analysis under variable amplitude loadings / Y. Xiang, Y. Liu // Journal of Aerospace Engineering. - 2016. - Vol. 29.

10. Lu, Z. Small time scale fatigue crack growth analysis / Z. Lu, Y. Liu // International Journal of Fatigue. -2010. -Vol. 32.-P. 1306- 1321.

11. Wells, A.A. Unstable crack propagation in metals-cleavage and fast fracture / A.A. Wells // Proceedings of the Cranfield Crack Propagation Symposium. -1961.-Vol. L-P. 210-230.

12. McClung, R.C. Crack closure and plastic zone size in fatigue / R.C. McClung // Fatigue Fracture Engineering Material Structure. - 1991. - Vol. 14. - P. 455 -468.

13. Elber, W. Fatigue crack growth under cyclic tension / W. Elber // Engineering Fracture Mechanics. - 1970. -Vol. 2. - P. 37 - 45.

14. Rice, J.R. Mechanics of crack tip deformation and extension by fatigue / J.R. Rice //Fatigue Crack Propagation: ASTM STP415. - 1967. - P. 247-309.

15. Pippan, R. Fatigue crack closure: a review of the physical phenomena / R. Pippan, A. Hohenwarter // Fatigue & Fracture of Engineering Materials & Structures. - 2017.-Vol. 40.-P. 471 -495.

16. Kemp, R.M.J. Fatigue crack closure - a review / R.M.J. Kemp // Technical Report 90046 ICAF Document 1776: Royal Aerospace Establishment, UK. -1990.-68 p.

17. de Matos, P.F.P. On the accurate assessment of crack opening and closing stresses in plasticity-induced fatigue crack closure problems / P.F.P. de Matos, D. Nowell // Engineering Fracture Mechanics. - 2007. -Vol. 74.-P. 1579- 1601.

18. Codrington, J. Investigation of plasticity-induced fatigue crack closure / J. Codrington, A. Kotousov // 5th Australasian Congress on Applied Mechanics, ASAM, Australia. - 2007.

19. Yang, J. Existence and insufficiency of the crack closure for fatigue crack growth analysis / J. Yang, W Zhang, Y Liu // International Journal of Fatigue -2014. -Vol. 62.-P. 144- 153.

20. Fayvisovich, A.V. Eksperimental'naya ocenka izmeneniya velichiny KIN vdol' fronta poverhnostnoy treschiny / A.V. Fayvisovich // Zavodskaya laboratoriya. Diagnostikamaterialov. - 1996. -№3 -S. 45-48.

21. Antimes, F. V. Empirical model for plasticity-induced crack closure based on Kmax and DK / F. V. Antunes, A. G. Chegini, D. Camas, L. Correia // Fatigue Fract Engng Mater Struct. -2015. - P.l - 14.


Login or Create
* Forgot password?