The problem of reducing maneuverability with a reduced speed is relevant for modem transport vessels. The need to maneuver at a low speed, characterized by a reduced lateral force of the mdder blade, requires reaching the limiting angles of deflection of the steering surface. Thereby it leads to a flow separation and a relative decrease in the turning moment. There are various methods of increasing the lift force on the mdder, one of which is the boundary layer control method. It has proven itself in aviation and is designed to accelerate and ensure smoothly flow around the suction surface of the rudder blade. In boundary layer control systems, the main effect is formed by ensuring a smooth accelerated flow of fluid on the rudder, without separation of the flow. It is determined by the maximum efflux efficiency required to create a smooth flow around, as well as increase the circulation of speed around the mdder blade. In the article, numerical modeling and calculation of the hydrodynamic characteristics of the rudder blade of a transport vessel with deadweight of 65 thousand tons with boundary layer control and velocity circulation relative to the rudder blade have been performed. Numerical modeling and computational determination of the hydrodynamic characteristics of the mdder blade were carried out for various options for the placement of the narrow nozzle and the parameters of the additional inlet water. The efficiency of using the steering surface in the operating range of the rudder blade deflection with the outflow of jets onto the suction surface of the airfoil, as well as the outflow of liquid jets from the trailing edge of the control surface at a certain angle to the airfoil chord is analyzed. Further directions and ranges of possible changes in parameters when using active control systems for the rudder flow have been determined. An increase in the hydrodynamic characteristics of a vessel's rudder blade contributes to an increase in its efficiency, both at low speeds and at the design modes of the vessel's movement.
boundary layer, continuous flow, supercirculation effect, jet pulse coefficient, circulation control system, boundary-layer control system, mdder flow, mdder efficiency, hydrodynamic characteristics
1. Basic Principles of Ship Propulsion. Url: https://marine.man-es.com/propeller-aft-ship//. (data obrascheniya 01.12.2020).
2. Antonenko, S. V. Sudovye dvizhiteli: ucheb. posobie / S. V. Antonenko. - Vladivostok: Izd-vo DVGTU, 2007. - 126 s.
3. Sasaki, N., Kuribayashi, S., & Atlar, M. (2018, April). Gate Rudder®. In Proceedings of the 3rd International Symposium on Naval Architecture and Maritime (INT-NAM), Istanbul, Turkey. Pp. 24-25.
4. Park S., Oh G. H., Rhee S. H., Koo B. Y., Lee H. Full scale wake prediction of an energy saving device by using computational fluid dynamics. Ocean Engineering. 2015. № 101. Pp. 254-263.
5. Kim J. H., Choi J. E., Choi B. J., Chung S. H., Seo H. W. Development of energy-saving devices for a full slow-speed ship through improving propulsion performance International Journal of Naval Architecture and Ocean Engineering. 2015. № 7. Issue 2. Pp. 390-398.
6. Shen Y. T., Jiang Ch. W., Kenneth R. D. Twisted Rudder for Reduced Cavitation. J Ship Res. 1997. Vol. 44. Pp. 260-272.
7. Jialun L., Quadvlieg F., Hekkenberg, R. Impacts of the rudder profile on manoeuvring performance of ships. 2016. Vol. 124. - Pp. 226-240.
8. Ibragimov O. E., Primenenie struynoy mehanizacii dlya povysheniya manevrennosti sudov / O.E. Ibragimov, D. I. Osovskiy // Rybnoe hozyaystvo Ukrainy. - 2011. - № 5. S. 45-47.
9. Petrov, A. V. Raschet gidrodinamicheskih harakteristik kryl'ev so struynoy mehanizaciey / A. V. Petrov // Tr. IDEI. - 1984, vyp. 2235.
10. Petrov, A. V. Metod rascheta koefficienta impul'sa strui, potrebnogo dlya likvidacii otryva potoka na profile kryla // A.B. Petrov, B. V. Shelomovskaya // Trudy CAEI. - 1979. -vyp. 1977.
11. Hmel'kov, B. A. Raschet aerodinamicheskih harakteristik kryla s reaktivnym zakrylkom / B. A. Hmel'kov // Tr. VVMA. -1959. - N2780.
12. Petrov, A. V. Separation flow over a high-lift wings and active flow control. High-lift and separation / A. V. Petrov // CEAS European Forum. RAES Proc. London. - 1995. -Pp. 20.1 -20.7
13. Petrov, A.B. Primenenie tangencial'nogo vyduva struy dlya snizheniya soprotivleniya sverhkriticheskiy profiley pri bol'shih dozvukovyh skorostyah / A.B. Petrov, V. D. Bokser, A.B. Volkov // Uchenye zapiski CAEI. - 2009. - T. XL, - № 1,-s. 8-16.
14. Petrov, A.B. Energeticheskie metody uvelicheniya pod'emnoy sily kryla / A.B. Petrov // M.:FIZMATLIT.-2011.-S. 120- 125.
15. Sharatov, A. S. Proverka gipotezy dopolnitel'nogo struynogo vozdeystviya vody, podavaemoy cherez schelevuyu nasadku na lopasti grebnogo vinta / A.C. Sharatov // Ekspluataciya morskogo transporta. - 2019. - №. 1. - S. 67-76.
16. Cherepanov B. E. Sudovye vspomogatel'nye i promyslovye mehanizmy, sistemy i ih ekspluataciya/ B.E. Cherpanov //M.: Agropromizdat. -1986,- 283 s.
17. Sertifikaciya Flowvision Url:http://www.tesis.com.ru/software/flowvision/ (data obrascheniya 01.12.2020).
18. Karasev, P. I. Kachestvennoe postroenie raschetnoy setki dlya resheniya zadach aerodinamiki v programmnom komplekse FlowVision / P. I. Karasev, A. S. Shishaeva, A. A. Aksenov // Vestnik YuUrEU. Seriya: Vychislitel'naya matematika i informatika. - 2012. - №47 (306). - S. 46-58.
19. Korol', Yu. M. Vliyanie lopastnyh i profil'nyh harakteristik na gidrodinamicheskuyu effektivnost' grebnyh vintov / Yu. M. Korol', O. N. Kornelyuk // Nauka i progress transporta. Vestnik Dnepropetrovskogo nacional'nogo universiteta zheleznodorozhnogo transporta. -2017,-№4(70). - S. 80-88.
20. Osovskiy, D.I. Vliyanie ogranichennogo prostranstva na rezul'taty chislennogo i eksperimental'nogo issledovaniya grebnogo vinta s dopolnitel'nym struynym vozdeystviem vody na lopasti / Osovskiy D.I., Sharatov A.C. // Vestnik Volzhskoy gosudarstvennoy akademii vodnogo transporta. - 2019. - № 58. - S. 39-53
21. Sharatov, A. S. Analiz vliyaniya struynogo interceptora lopasti na potok vody, vzaimodeystvuyuschiy s grebnym vintom. / A.C. Sharatov, NL. Klimenko, V.A. Ohlonin // Vestnik Kerchenskogo gosudarstvennogo morskogo tehnologicheskogo universiteta. - 2020. Vyp. №4. - S. 42-50.
22. Pat. UA 58662, MPK V63N 25/00 Konstrukciya mehanizirovannogo grebnogo vinta / D.I. Osovskiy, zayav, i patentoobl. Kerchenskiy gosudarstvennyy morskoy tehnologicheskiy universitet. - № 201009632; zayavl. 02.08.2010; opubl. 26.04.2011,Byul. №8.-2011