The problem of safety of navigation has been considered in the article. In order to ensure the safety of navigation it is necessary to plan the upcoming passage from the berth to berth and carry out preliminary plotting. For ships, the passage planning process begins in advance and may be based on the vessel's on-line schedule, information from the ship’s operator or agent. Route of the vessel should be plotted in such a way as to reduce the probability of a dangerous situation to a minimum. Various factors described in the article do not allow a good assessment of all the necessary information for the navigation of the vessel. The disadvantages can be eliminated by automating the vessel's route planning processes by creating an artificially intelligent system, in particular the use of data mining when selecting pre-route parameters. The initial goal of the work was a creation a decision support system for navigators. The research results were unexpected and some important conclusions were made.
preliminary route planning, data mining, decision support system, clustering
1. Aleksandrov, M. H. Bezopasnost' cheloveka na more. - L.: Sudostroenie, 1983. [In Russian: Aleksandrov, M.N. Human safety at sea. L: Shipbuilding].
2. Gagarskiy, D.A. Elektronnye kartograficheskie sistemy / D.A. Gagarskiy - SPb. : MORSAR, 2017. -224 s. [InRussian:. Gagarskiy, D. Electronic chartsystems. Saint Petersburg: MORSAR],
3. Dmitriev, V. I. Praktika moreplavaniya. - SPb.: «Elmor», 2009. [In Russian: Dmitriev, V.l. The practice of navigation. Saint Petersburg: Elmor],
4. Stadnichenko, S. M. Chelovecheskiy faktor na more: uchebno-metodicheskoe posobie. - Odessa: Astro - print, 2003. [In Russian: Stadnichenko, S.M. The human factor at sea. Odessa: Astro-print],
5. Kaluzhskiy, A. D. O gotovnosti sudna k vypolneniyu zadachi. Sistema informacionnoy podderzhki prinyatiya resheniya Tekst.// Morskoy sbornik-2010-№6-S.24-35 [In Russian: Kaluzhskiy, A.D. On the readiness of the vessel to perform the task. Decision Information Support System. Sea collection #6].
6. Admiralty method of tidal prediction. Hydrographic department, Taunton under the Superintendence of Rear-Admiral G P D Hall, CB, DSC Hydrographer of the Navy, Crown Copyright 1975.
7. Martin C. Brown. Data mining techniques. Available at: http://www.ibm.com/developenvorks/ru/library/ba-data-mining-techniques/, accessed 20.01.2015.
8. Maklennen, Dzhemi. Microsoft SQL Server 2008. Data Mining - intellektual'nyy analiz dannyh / Dzhemi Maklennen & Chzhaohuey Tang & Bogdan Krivat. - SPb.: BHV-Peterburg, 2009. - 700 s. [In Russian: Jemmy MacLennan & ZhaoHui Tang & Bogdan Crivat. Data Mining with Microsoft SQL Server 2008. Saint Petersburg: BXV-Petersburg],
9. Rutkovskiy JI. Metody i tehnologii iskusstvennogo intellekta / per. s pol'sk. I. D. Rudinskogo. - M.: Koryachaya liniya-Telekom, 2010,- 520 s., il. [In Russian:. Rutkowski, L. Methods and technologies of artificial intelligence. Hot line: Telekom],
10. Chubukova I. A. Data Mining: uchebnoe posobie. - M. : Internet-universitet informacionnyh tehnologiy: BINOM: Laboratoriya znaniy, 2006. - 382 s. [In Russian:. Chubukova, I. Data Mining. Moscow: Knowledge laboratory],
11. Resolution A.817(19) Performance Standards For Electronic Chart Display And Information Systems (ECDIS) (adopted on 23 November 1995).
12. Kondrat'ev S.I. Teoreticheskie osnovy upravleniya krupnotonnazhnymi sudami po kriteriyam bezopasnosti i energosberezheniya: dissertaciya na soiskanie uchenoy stepeni doktora tehnicheskih nauk,- Novorossiysk, 2004.
13. Klyuev V.V. Ocenka riskov i upravlenie riskami v praktike sudovozhdeniya [Tekst] / V.V. Klyuev, S.I. Kondrat'ev, V.I. Tul'chinskiy // Ekspluataciya morskogo transporta,- 2016 - № 3 (80).
14. Astrein V.V., S.I. Kondrat'ev, E.V. Hekert Algoritm samoorganizacii grupp sudov dlya preduprezhdeniya stolknoveniy [Tekst] //Ekspluataciya morskogo transporta- 2016-№2 (79).-S. 45-50.