IDENTIFICATION OF OPTICAL OBJECTS IN THE SYSTEMS OF OBSERVATION OF UNDERWATER VEHICLES
Abstract and keywords
Abstract (English):
The article is devoted to the problems of development of models and methods of operational identification of optical objects. The task is solved with regard to optimization of identification process of visual optical objects on the bases of the system of observation of desert underwater apparatus. Algorithm of compensation of informative deflection with regard to the data of stabilization of coordinate position of the correlated maximum has been described. Conditions of algorithm identification invariance as to indignation in the field of objects of geo situation have been formulated. Algorithm of forming control of Standard objects has been given here. Limitations of method and condition of algorithm invariance of identification with regard to indignation in the field of investigated objects have been defined.

Keywords:
optimal compensatory identification, optical objects, geo situation, space of objects
Text
Publication text (PDF): Read Download
References

1. Dmitriev A.I, Zhuravlev Yu.I, Krendelev F.P. O matematicheskih principah klassifikacii predmetov ili yavleniy // Diskretnyy analiz - Novosibirsk: IM SO AN SSSR, Vyp. 7. 1966.-S. 3-17.

2. Donskoy V.I. Algoritmy obucheniya, osnovannye na postroenii reshayuschih derev'ev // ZhVMiMF - 1982,-№4,- S. 963-974.

3. Merkov A.B. Osnovnye metody, primenyaemye dlya raspoznavaniya rukopisnogo teksta. Laboratoriya raspoznavaniya obrazov MCNM0.2004. Gl.4/ http://fomit2005.narod.ru/papers/methods.ps

4. Arlazarov V.L, Slavin O.A. Algoritmy raspoznavaniya i tehnologii vvoda tekstov v EVM //Informacionnye tehnologii i vychislitel'nye sistemy - 1996. -1 - S. 48-54.

5. Vincyuk T.K. Raspoznavanie ustnoy rechi metodami dinamicheskogo programmirovaniya // Kibernetika- 1968. -№ 1- S. 81-88.

6. S. Furui. Perspectives of Speech Processing Technologies // “SPECOM’98” International Workshop Proceedings. St.-Petersburg. -St.-Petersburg, 1998. Pp. 1-6.

7. J.C. Anigbogu and A. Belaid, Hidden Markov Models in Text Recognition, HHPRAI. Vol.9. pp. 925-958,1995

8. Shlezinger M.I. Dvumernoe obobschenie kontekstno-svobodnyh yazykov i grammatik // Metody i sredstva informatiki rechi. Kiev: In-t kibernetiki NAN Ukrainy - 1991-S. 36-47.

9. Andreev Yu.V., Dmitriev A.S. Dinamicheskiy haos i neyronnye seti v zadachah klassifikacii i raspoznavaniya // Neyrokomp'yutery i ih primenenie: sb. dokl. 5 Vseros. konf.- 1999. - S.438-441.

10. Terehov S.A. Neyrosetevye neparametricheskie metody analiza eksperimental'nyh dannyh//VNIITF,- 1998. - 18 s.

11. Zhilenkov, A., Nyrkov, A., Chemyi, S., Sokolov, S. Simulation of in-sensor processes in the sensor - Object system type when scanning the elements of underwater communication lines with a probe beam // International Review on Modelling and Simulations, 2017. 10 (5), pp. 363-370.

12. Sokolov, S., Zhilenkov, A., Nyrkov, A., Chemyi, S. The use robotics for underwater research complex objects // Advances in Intelligent Systems and Computing, 2017. 556, pp. 421-427.


Login or Create
* Forgot password?